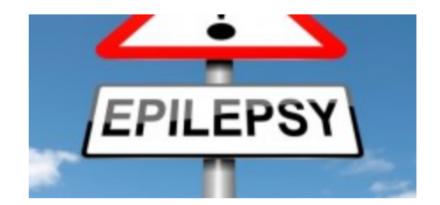
Mortality and causes of death in children referred to a tertiary epilepsy center – Danish study

Sabine Grønborg¹ & Peter Uldall²

¹Center for Rare Diseases, Department of Clinical Genetics & ²Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, Juliane Marie Center, University Hospital Copenhagen


Autumn Meeting of the Danish Epilepsy Society, 24 October 2014

Background

- Children with epilepsy have a 5 9 times increased risk of death
- Limited data and limited awareness in pediatric setting*
- Increased mortality due to:
 - systematic complications to neurodisability
 - lethal underlying conditions
 - directly seizure related deaths, including
 - SUDEP
- Unevenly distributed mortality risk depending on different patient characteristics – "at risk populations"

Motivation for study

- Better knowledge and data regarding mortality risk and patient risk factors needed for
 - adequate and individualized counseling of families
 - future evaluation of prophylactic measures
 - better understanding of SUDEP risk and pathogenesis
 - development of general counseling guidelines

Case history (mortality risk?)

- First child, healthy parents; normal pregnancy and birth
- From the 2nd day of life:

bursts of myoclonic seizures, partly with apnea

followed by tonic seizures in axial and proximal muscles

EEG with burst-suppression

- No clear effect of multiple AED and ketogenic diet
- At 2 years of age:

daily seizures as epileptic spasms with tonic component

• Severely delayed psychomotor development

Case history - continued

- Severe, neonatal epileptic encephalopathy
- Initial diagnostic efforts without specific results

Case history - continued

- Severe, neonatal epileptic encephalopathy
- Initial diagnostic efforts without specific results

① Adequate counseling regarding mortality risk? Epilepsy-related mortality risk?

Case history - continued

- Severe, neonatal epileptic encephalopathy
- Initial diagnostic efforts without specific results

① Adequate counseling regarding mortality risk? Epilepsy-related mortality risk?

- Diagnosed with *KCNQ2*-related epileptic encephalopathy at age
 2.5 years
- Found dead in bed shortly after probable SUDEP

Weckhuysen S et al, Neurology 81: 1697, 2013

Danish Study

Original article

Mortality and causes of death in children referred to a tertiary epilepsy center

Sabine Grønborg*, Peter Uldall

Danish Epilepsy Center Filadelfia, Children's Department, Kolonivej 1, 4293 Dianalund, Denmark

EUROPEAN JOURNAL OF PAEDIATRIC NEUROLOGY 18 (2014) 66-71

Danish Epilepsy Center Filadelfia, Children's Department

Study and cohort

- Cohort: all children referred to Danish Epilepsy Center Dianalund from January 1, 1999 to August 31, 2008
 - epilepsy diagnosis confirmed after evaluation
 - age 1 month 18 years at time of enrollment
 - cases of death registered until June 1, 2009
- Retrospective analysis of mortality and causes of death
- Cohort: 1,974 epilepsy patients 11,309 patient years male:female – 1 : 0.92 average age 15 at end of study period

Results: Overall mortality

- 43 of 1,974 patients died during the study period (2.2%)
 - = 38 cases per 10,000 patient years; 2/3 male
- At least 90% of deceased patients had symptomatic epilepsy and intellectual disability
- Only 5% of the deceased population had idiopathic epilepsy (vs.
 22% in the studied patient population; p=0.003)

Results: Overall mortality

 ✓ Comparable mortality rates in previous studies
 ✓ Pediatric epilepsy patients without neurological deficit – mortality close to background population

Berg AT et al, 2013. Pediatrics 132: 124-31.

Progressive neurodegenerative conditions

- 9 patients died in the course of a progressive neurodegenerative condition (8 cases per 10,000 patient years)
- Corresponding to 20% of mortality in this study, only 1 death epilepsy related

Table 2	Table 2 — Patients with death in the course of progressive neurodegenerative disease.									
Pt. no.	Sex	Age at death (years)	Cause of death	Therapy	Therapy Seizure Neurodegenerative dis control					
10	f	8	Respiratory insufficiency	TPM, CLB, KD	Resistant	Late infantile neuronal ceroid lipofuscinosis				
11	f	20	Cachexia	VPA, LEV, CLB, CZP	Resistant	Lafora body disease				
12	m	0.5	Status epilepticus/liver failure	LEV, ZNS	Resistant	Suspected adenylosuccinate lyase deficiency ^a				
13	f	11	Necrotizing pancreatitis	STM, CLB	Resistant	Late infantile neuronal ceroid lipofuscinosis				
14	f	2.5	Respiratory insufficiency	VPA, VGB, CLB	Resistant	Adenylosuccinate lyase deficiency				
15	m	21	Gastrointestinal bleeding	LEV, LTG	Resistant	Late infantile neuronal ceroid lipofuscinosis				
16	m	9.5	Respiratory insufficiency	VPA, LTG	Resistant	GM2 ganliosidosis				
17	f	21	Respiratory insufficiency	LTG, CLB, CZP	Resistant	Mucopolysaccharidosis III				
18	m	3	Respiratory insufficiency	CBZ, CZP	Resistant	Unclassified progressive				

m: male, f: female; Epilepsy was classified as symptomatic in this patient group. None of the patients underwent autopsy. Patients 10, 16, and 17 had pneumonia leading to respiratory insufficiency.

^a Brother to patient 14; Therapy: see Table 1.

Progressive neurodegenerative conditions

- Sparse information on neurodegenerative conditions contributing to mortality in pediatric epilepsy patients in the literature
 - ✓ Mortality primarily due to complications of neurodegeneration
 - ✓ Thorough initial neuropediatric evaluation in this study

SUDEP

- Death of 9 patients was classified as SUDEP (8 cases per 10,000 patient years)
- Corresponding to 20% of mortality in this study

Table 1	Table 1 – Patients with death classified as SUDEP.									
Pt. no.	Sex	Age at death (years)	Circumstances of death	Autopsy	Epilepsy etiology	Therapy	Seizure control	Intellectual disability		
1	m	17	In bed/not observed	Yes	Symptomatic	VPA, STM	Resistant	Yes		
2	m	24	Not observed	No	Symptomatic	LTG, VPA	Resistant	Yes		
3	m	12	In bed/not observed	No	Symptomatic	VPA, CLB, CBZ	Resistant	Yes		
4	m	8	In bed/not observed	No	Cryptogenic	VGB, LEV, KD, VNS	Resistant	Yes		
5	m	20	In bed/not observed	Yes	Cryptogenic	LTG, TPM	Resistant	No		
6	f	22	In bed/not observed	No	Idiopathic	LEV, TPM, ESM	Resistant	No		
7	m	14.5	Cardiac arrest after	Yes	Epileptic	STM, LTG, VNS	Resistant	Yes		
			focal seizure		encephalopathy					
8	m	17	Not observed	Yes	Cryptogenic	_	Rare seizures	Yes		
9	m	2.5	In bed/not observed	Yes	Cryptogenic	TPM, CLB, KD	Resistant	Yes		

m: male, f: female; autopsy findings: see text; Therapy: treatment with AED (abbreviated as follows: valproic acid, VPA; sulthiame, STM; lamotrigine, LTG; clobazam, CLB; carbamazepine, CBZ; vigabatrin, VGB; levetiracetam, LEV; topiramate, TPM; ethosuximide, ESM; zonisamide, ZNS; clonazepam, CZP; oxcarbazepine, OXC; pregabalin, PGB), ketogenic diet (KD), vagus nerve stimulator (VNS); Seizure control: see text; Intellectual disability: IQ < 70: yes, IQ > 70: no.

SUDEP

 ✓ SUDEP incidence higher than previously published (up to 4.3 per 10,000 patient years) – biased cohort

✓ Other studies exclude certain symptomatic epilepsies

- ✓ 4 SUDEP cases in the pediatric age group (2.5, 8, 12, 14.5 years)
 although peak age is 20-40 years
 - ✓ All patients with known SUDEP risk factors (GTCS, AED polytherapy, treatment resistance, ...)

Various other causes of death

- 25 patients died of various reasons other than SUDEP or neurodegenerative conditions (22 cases per 10,000 patient years)
- Corresponding to 58% of the mortality in this study
- Median age at death 10.5 years (1.5 23 years)
- Symptomatic/cryptogenic epilepsy etiology in 24/25 patients
- > 90% with intellectual disability; 65% with motor disability
- 85% treatment resistant epilepsy

Various other causes of death

Pt. no.	Sex	Age at death (years)	Cause of death	Epilepsy etiology	Therapy	Seizure control	Intellectual disability
19	f	3.5	Gastrointestinal	Symptomatic	CLB, VPA	Resistant	Yes
20	f	4	Pneumonia	Symptomatic	CLB, VPA	Resistant	Yes
21	f	15	Cachexia/unknown	Symptomatic	CLB, VPA	Resistant	Yes
22	f	17	Pneumonia	Symptomatic	CLB, VPA, OXC, KD	Resistant	Yes
23	m	17.5	Respiratory insufficiency	Symptomatic	LTG, STM, CLB, VGB, KD	Resistant	Yes
24	f	2	Pneumonia	Symptomatic	LEV, VGB, CBZ, KD	Resistant	Yes
25	m	11.5	Pneumonia	Symptomatic	VPA, CLB, TPM, KD	Resistant	Yes
26	m	15	Pneumonia	Symptomatic	LTG, CLB, TPM, VGB, KD	Resistant	Yes
27	m	15	Pneumonia	Symptomatic	TPM, CBZ	Resistant	Yes
28	f	4.5	Respiratory insufficiency	Symptomatic	TPM, LEV, KD	Resistant	Yes
29	m	18	Unknown	Symptomatic	LTG, LEV, CLB	Resistant	Yes
30	m	3.5	Seizure-related strangulation	Symptomatic	LTG, VPA, CLB	Resistant	Yes
31	m	23	Suicide	Cryptogenic	LTG	Seizure-free	No
32	m	2	Increased intracranial pressure	Symptomatic	LTG	Resistant	Yes
33	m	18	Increased intracranial pressure	Symptomatic	LTG, OXC	Resistant	Yes
34	f	1.5	Status epilepticus	Idiopathic	VPA, STM	Resistant	Yes
35	m	6.5	Status epilepticus	Cryptogenic	VPA, STM, PGB, VNS	Resistant	Yes
36	m	10.5	Pneumonia	Symptomatic	CBZ, VPA	Resistant	Yes
37	m	3	Respiratory insufficiency	Symptomatic	LTG	Resistant	Yes
38	m	16	Gastrointestinal	Symptomatic	OXC	Resistant	Yes
39	m	9	Gastrointestinal	Symptomatic	CLB	Resistant	Yes
40	f	21	Gastrointestinal	Symptomatic	VPA, LTG	Resistant	Yes
41	m	5.5	Gastrointestinal	Symptomatic	LTG	Resistant	Yes
42	m	6	Accident, not epilepsy-related	Cryptogenic	CBZ, ESM	Resistant	No
43	f	16	Complication neurosurgery	Symptomatic	VPA, CLB, TPM	Resistant	Yes

m: male, f: female; KD: ketogenic diet, Therapy: see Table 1; Intellectual disability: IQ < 70: yes, IQ > 70: no.

Various other causes of death

 ✓ Systematic complications to neurodisability are leading cause of mortality

 ✓ i.e. the underlying neurological condition itself confers substantial mortality risk

✓ Focus on prevention of these complications (infections, supportive care, tube feeding)

Other seizure-related deaths

- 3 deaths due to status epilepticus; 1 seizure-related accident
- Without SUDEP, only 9% directly epilepsy-related deaths

Lower risk for seizure-related deaths than in previous studies
 Follow-up period

✓ No cases of seizure related drowning

- Pediatric setting

- Focused education program at Epilepsy Hospital

 ✓ No seizure-related deaths in patients with well-controlled epilepsy syndromes

Issue: duration of follow-up

- Study with 40 years follow-up of childhood-onset epilepsy patients (Sillanpää and Shinnar 2010 and 2013)
 - Higher overall and epilepsy-related mortality compared to studies with shorter follow-up; e.g. SUDEP in 9% of cohort
 - In idiopathic epilepsy patients mortality rate increases in young adulthood

Conclusions from the Danish study...

- Mortality rates in line with previous comparable studies
- Even though SUDEP peak age is 20-40 years, pediatric age SUDEP is an important issue, also for counseling
- General risk factors comparable to adult epilepsy population
- Only 30% of mortality is directly epilepsy-related and complications to neurological disability are an important risk factor – important for general patient care

... and general considerations

• Regarding counseling - individual patient risk in patients with "complicated" or "uncomplicated" epilepsy has to be considered

- Certain SUDEP risk factors (e.g. childhood onset epilepsy, long epilepsy duration) and SUDEP peak age beginning at 20 years
 - ➔ special attention to transition time from neuropediatrics to neurology

Other individual risk factors?

• Our patient case with *KCNQ2*-related epileptic encephalopathy – autonomic dysfunction reported in other patients

➔ possible additional counseling issue

- Genetic risk factors?
 - LongQT syndrome with seizure phenotype (KCNQ1, KCNH2, SCN5A)
 - Dravet syndrome/GEFS+ (SCN1A), and others
- Analysis of genetic variation in these and other neurocardiac genes

 future biomarkers with clinical significance for SUDEP?

Glasscock E. Epilepsy and Behaviour, 2013; Massey CA et al, Nat Rev Neurology, 2014; Klassen TL et al, Epilepsia, 2014.

Acknowledgments

Rikke S. Møller and Helle Hjalgrim –

Research Unit at the Danish Epilepsy Center, and Danish Epilepsy Center, Dianalund, Denmark

Further references

Nashef L et al, 2012. Epilepsia 53 (2): 227-33 Berg AT et al, 2010. Epilepsia 51 (4): 676 - 85 Meyer S et al, 2010. J Paediatr Child Health 47 (6): 326-31 Camfield CS et al, 2002. Lancet 359 (9321): 1891-5 Ackers R et al, 2011. Drug Saf 34: 403-13 Sillanpää and Shinnar, 2010. N Engl J Med 363 (26): 2522-9 Nesbitt V et al, 2012. Dev Med Child Neurol 54 (7): 612-7 Weber P et al, 2005. Acta Paediatr 94 (5): 564-7 Nashef L and Ryvlin P, 2009. Neurol Clin 27 (4): 1063-74 Terra VC et al, 2011. Arg Neuropsiguiatr 69 (5): 766-9 Hesdorffer DC et al, 2011. Epilepsia 52 (6): 1150-9 Shorvon S and Tomson T. 2011. Lancet 378 (9808): 2028-38